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Susceptibilities of the antiferromagnet REM model
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Abstract. The linear and non-linear susceptibilities of the two sub-lattices Random Energy Model (REM)
allowing antiferromagnetic order is studied as a function of the external field (h) and temperature (T ).
Due to the competition between external field and the internal exchange field acting on the spins there
is a drastic change of the system’s behavior as the parameters (h, T ) are varied. The behavior of the
susceptibilities in low and high fields is very different in that the latter may grow as the temperature
decreases. Moreover, the critical region undergoes a substantial enlargement as the external field increases.

PACS. 75.10.Nr Spin-glass and other random models – 75.40.Cx Static properties (order parameter, static
susceptibility, heat capacities, critical exponents, etc.) – 75.50.Lk Spin glasses and other random magnets

1 Introduction

Disordered magnetic systems have been intensely stud-
ied both theoretically and experimentally over the past
decades. Proeminent among these systems one finds the
spin glasses and diluted antiferromagnets in a field (ran-
dom field problem) [1]. There is a wealth of unsolved
questions both from the viewpoint experimental and theo-
retical, despite the huge progress in the field. Simple mod-
els retaining the fundamental aspects of the problem and
which can be worked out thoughrouly in such a scenario
are a blessing welcome by workers in the field. The canoni-
cal model for spin glasses is the Edwards-Anderson model
[2] which led to the well known Sherrington-Kirkpatrick
(SK) mean field model [3]. The solution of the SK model is
rather intricate [1] for the low temperature phase is highly
degenerate and without any obvious symmetry among the
possible states in addition to the presence of broken ergod-
icity.

A simple model, yet retaining all crucial features of the
SK model, was introduced long ago by Derrida [4]. This
is the Random Energy Model (REM) which considers the
possible energy states of the system as random variables
and is equivalent to a multispin interacting Ising model
in the limit when the number of interacting units tends
to infinity. The model is exactly solvable with or without
replicas and was termed “the simplest spin glass” [5]. It
has been applied in areas distinct from magnetic systems
such as in biophysics and related problems [6,7,8]. In the
present work the REM is generalized for two-sublattices
systems having an uniform exchange antiferromag-
netic interaction between the sublattices. One finds [9],
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as expected, several phases: paramagnetic, antiferromag-
netic, spin glass, and mixed spin glass-antiferromagnetic.
All these phases persist in the presence of an external field
and due to the various competing fields acting on the spins
there may arise a rich variety of the system’s response
functions. The linear and higher order susceptibilities are
worked out and exhibit a behavior similar to recent ex-
perimental results [10]. In particular, the low temperature
behavior of the susceptibility depends strongly on the in-
tensity of the applied field: it may increases as T decreases
and even display a maximum at low T . A related analysis
for the SK model has been presented before [11], though
lacking a full numerical solution of the equations. Here we
present the numerical solution of the antiferromagnetic
REM model identifying all the main qualitative aspects
of the model and pointing out the substantial increase of
the critical region as h increases.

2 The model

The antiferromagnetic REM model may be defined
through the following multispin interacting Hamiltonian

H = −
∑

1≤i1<i2···<ip

∑
1≤j1<j2···<jp

×Ji1i2...ipj1j2...jp Si1Si2 . . . Sipσj1σj2 . . . σjp

+
J0

N

∑
i,j

Siσj − h
∑
i

(Si + σi) (1)

where the sets {Si = ±1}, {σi = ±1}, i = 1, 2, ..., N are
Ising spin variables on distinct sublattices, J0 > 0 is a
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uniform antiferromagnetic pair interaction among spins S
and σ, h is an external field and the Ji1i2...j1j2...jp are ran-
dom exchange interactions having a Gaussian probability
distribution,

P
(
Ji1i2...jp

)
=

√
N2p−1

πJ2(p!)2
exp

{
−

(
Ji1i2...jp

)2
N2p−1

J2(p!)2

}
(2)

where the N scaling ensures a nontrivial thermodynamic
limit and at the end of calculation the limit p → ∞ is
taken. The SK result is obtained through the substitution
p = 1 and J →

√
2J (from now on we take J = 1).

Following standard procedure [4,5], the free energy per
spin within the replica approach is given by

f = −
β

8
+ lim
n→0

1

2nβ

1

2

2∑
s=1

n∑
α=1

n∑
β 6=α

λαβs Q
αβ
s

+
2∑
s=1

n∑
α=1

Λαsm
α
s − βh

2∑
s=1

n∑
α=1

mα
s

−
β2

4

n∑
α=1

∑
β 6=α

(
Qαβ1 Q

αβ
2

)p
+ J0

n∑
α=1

mα
1m

α
2

− ln Tr exp

1

2

n∑
α=1

n∑
β 6=α

(
λαβ1 σασβ + λαβ2 SαSβ

)

+
n∑
α=1

(Γα1 σ
α + Γα2 S

α) + h

n∑
α=1

(σα + Sα)

]}
(3)

where α, β = 1, 2, ..., n, are replica indices and β = 1/T
(taking kB = 1); λαβs , Qαβs , Γαs , mα

s (s = 1, 2) are
variational parameters and the expression in braces is
to be evaluated at the dominant saddle point, hence the
equations

Qαβ1 = 〈σασβ〉; mα
1 = 〈σα〉

Γα1 = −βJ0m
α
2 ; λαβ1 =

β2p

4

(
Qαβ1

)p−1 (
Qαβ2

)p
(4)

and similar equations with the interchange 1→ 2, σ → S,
the averages 〈· · · 〉 are calculated using the effective Hamil-
tonian defined by the argument of the exponential func-
tion in equation (3). The set of equations (4) has a replica

symmetric solution mα
1 = m1, mα

2 = m2, Qαβ1 = Q1 =

m2
1, Qαβ2 = Q2 = m2

2, with λαβ1 = λαβ2 = 0 as p → ∞.
The replica symmetric free energy becomes

f = −
β

8
−
J0m1m2

4
−

1

4β
ln {4 cosh [β(h− J0m1)]

× cosh [β(h− J0m2)]} (5)

with

m1 = tgh [β(h− J0m2)]

m2 = tgh [β(h− J0m1)] . (6)
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Fig. 1. The phase diagram of the antiferromagnetic REM
model for J0 = 1.5.

Equations (5, 6) are valid in a large part of the (T, h, J0)
parameters space, specifically in the regions where para-
magnetic (m1 = m2) and antiferromagnetic (m1 6= m2)
solutions occur. However, in some regions of the parame-
ters space the replica symmetric solution gives negative
entropy and the remedy is to break replica symmetry
[1,4,5,12]. For this model a one step Parisi ansatz is suffi-
cient [5], and one finds that the system freezes completely
whenever the solution to equations (5, 6) furnish zero en-
tropy in a state of broken replica symmetry, a result ob-
tainable with or without the replica approach. The study
of the broken replica symmetry solution furnish informa-
tion about the structure of the possible thermodynamic
states; in this model many states exist having minimal
overlap among states and maximal self-overlap [5].

3 Susceptibilities

We are here interested in working out the magnetic re-
sponse functions for the model defined by equations (1, 2)

when J0 >
√

8ln2 and p → ∞, i.e., in that region of the
parameters space where the phases paramagnetic (PM),
antiferromagnetic (AFM), spin glass (SG) and mixed spin
glass-antiferromagnetic (MX) may arise depending on the
values of (T, h) [9]. Figure 1 shows the phase diagram of
the model for J0 = 1.5. Both theoretically [11,13] and ex-
perimentally [10] the following response functions are of
interest:

χK =
1

K!

(
∂KM

∂hK

)
T

; K = 1, 2, 3, · · · (7)

where M = M(T, h) is the equilibrium magnetization and
we are interested in studying χK(T, h). For the lowest ones
we have:

(i) Linear (differential) susceptibility

χ1 = (∂M/∂h)T . (8)
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Fig. 2. First order susceptibility χ1 for J0 = 1.5, h = 0.75.
Broken line is for pure AFM system.

From equations (5, 6) the magnetization is given by (valid
for the regions PM and AFM in Fig. 1)

M =
1

2
(m1 +m2)

=
1

2
{tgh [β(h− J0m1)] + tgh [β(h− J0m2)]} (9)

where m1, m2 are the solution of equation (6) which min-
imizes f , equation (5). For the other regions, for given
h, M is constant and equal to its value at the boundary
AFM/MX or PM/SG [4,5,9]. This boundary is given by
Tg = Tg(h, J0) to be obtained from the following equation

0 =
β2

8
+

1

2
` {5cosh [β(h− J0m1)] cosh [β(h− J0m2)]}

−
1

2
βm1 · (h− J0m2)−

1

2
βm2(h− J0m1) (10)

which delimit the regions of replica symmetric solutions
from broken replica symmetry solutions [4,5]. For this
model equation (10) gives the points where the entropy
first reach zero when decreasing the temperature from
high values. From (8, 9) χ1 is

χ1 =
1

2
β

[
S1 + S2 − 2βJ0S1S2

1− β2J2
0S1S2

]
(11)

where

S1 = 1−m2
1

S2 = 1−m2
2. (12)

For temperatures below Tg(h, J0) the system is frozen and
χ1 is constant. The numerical solution of equations (5) to
(10) for h = 0.75 and 1.25 is shown in Figures 2 and 3.
There is a clear change in the system’s response as the
external field is increased. At low field, Figure 2, the be-
havior is typical of antiferromagnetics having a decrease
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Fig. 3. First order susceptibility χ1 for J0 = 1.5, h = 1.25.
Broken line is for pure AFM system.

of χ1 at both sides of the Néel temperature plus a freez-
ing (mixed phase) at low T . For high fields, Figure 3, due
to the “anomalous” behavior (i.e. non-monotonic) of the
internal field Hi = h − J0M the susceptibility keeps in-
creasing as the temperature decreases until it assumes a
constant value, which may be smaller than the value for
uniform systems (dashed points in Fig. 3). It is tempting
to suggest that in an experimental measurement the field
cooled measurements (equilibrium) will follow the full line
in Figure 3 while the zero field ones will tend to follow the
dashed line, as for example in the diluted FexZn1−xF2 al-
though the present model is too simple to account for the
whole experimental results [10].

(ii) Non-linear susceptibility (second order)

χ2 = (χ2)St(1) + (χ2)St(2) (13)

where

(χ2)St(i) =
1

2

(
∂2mi

∂h2

)
; i = 1, 2 (14)

are the staggered susceptibilities.
At very low fields M(T, h) can be expanded in powers

of h, time reversal symmetry requires χ2(T, h = 0) = 0
and thus (χ1)St(1) = −(χ2)St(2). At non-zero fields this is
not so and we find

(χ2)St(1) =
D1 − βJ0S1D2

1− β2J2
0S1S2

(15)

where the S’s are given by (12) and

Di=−βmi

(
∂mi

∂h

)
T

[
1− J0

(
∂mj

∂h

)
T

]
; i, j(i 6= j)=1, 2

(16)

and a similar expression for (χ2)St(2). Both staggered
susceptibilities above diverge at the Néel temperature.
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Fig. 4. Second order staggered susceptibility (χ2)St(1) for J0 =
1.5. Field values are indicated.

Figure 4 shows the numerical solutions for equation (15)
for various fields. It is noteworthy the huge increase of
the neighborhood around TN where (χ)St is large as h
increases from zero.

(iii) Non-linear susceptibility (third order)

A hallmark among the response functions of spin glasses is
the negative divergence of χ3 at the glass transition [1,13].
From (5, 6) one obtains

χ3 = (χ3)St(1) + (χ3)St(2) (17)

where the terms may be written in the same form as in
(14) and (16)

(χ3)St(i) =
1

3!

(
∂3mi

∂h3

)
T

; i = 1, 2 (18)

(
∂3mi

∂h3

)
T

=
Ti − βJ0SiTj

1− β2J2
0S1S2

; i, j(i 6= j) = 1, 2. (19)

This quantity, at zero field, diverge at the transition tem-
perature for spin glasses and pure ferromagnets while for
antiferromagnets no divergence occurs [13]. In Figure 5 we
present the numerical solution for (χ3)St(1) for h = 0.75,
1.25 and 1.75. For finite fields there always occurs a di-
vergence at the Néel temperature. Not shown on the scale
of the figure is the cusp in χ3 at the boundary between
the phases AFM/MX. Again, notice the huge increase of
the region where χ3 is large as the field increases. In other
words, for high fields (h ' J0) χ3 is very large in a re-
gion close to TN whose width is comparable to TN itself
as is evident from Figure 5. En passant, we notice that
an enlargement of the critical region for high fields has
been continuously observed in measurements involving di-
luted AFM in a field [14], translated into two distincts
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Fig. 5. Third order staggered susceptibility (χ3)St(1) for J0 =
1.5. Field values are indicated.

temperatures: TN (Néel temperature) and Teq(h) where
irreversibility sets in for field cooled measurements. This
behavior may be expressed more quantitatively through a
Ginzburg-like parameter as usual.

4 Discussion

Random antiferromagnets have been intensely studied in
the last decades from the viewpoint of the random field
problem, spin glasses or in connection to high temperature
superconductors. Here we have taken the REM model with
two-sublattices as appropriated to a model which could
exhibit antiferromagnetism. The behavior of the suscepti-
bility, equation (7), as a function of the external field has
been shown to exhibit distinct behavior at low and high
fields, Figures 2 and 3. The region of fields where only the
phases PM and SG can exist has not been shown for it has
been considered previously [4,5]. The non-analytic model’s
behavior has been studied through the second and third
order staggered susceptibilities equations (14, 18). In a
field these quantities diverge at the Néel temperature and
as h increases they are very large in a substantial temper-
ature interval close to TN . Critical behavior is thus ampli-
fied in this case, and has been observed in measurements
involving diluted AFM in a field [14] where the region of
critical slowing down increases as h increases, in accord to
Figures 4 and 5. Physically, all this behavior stems from
the two-sublattice structure with opposing staggered mag-
netizations in the presence of an external uniform field. In
the present work we have exploited the numerical solution
of the equations reserving a more analytical treatment as
well as obvious extensions to future work.

The author is thankful to prof. F.C. Montenegro for discussing
his experimental results and CNPq for financial support.
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